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The role dopamine plays in decision-making has important theoretical, empirical and clinical implications. Here, we examined its

precise contribution by exploiting the lesion deficit model afforded by Parkinson’s disease. We studied patients in a two-stage

reinforcement learning task, while they were ON and OFF dopamine replacement medication. Contrary to expectation, we found

that dopaminergic drug state (ON or OFF) did not impact learning. Instead, the critical factor was drug state during the

performance phase, with patients ON medication choosing correctly significantly more frequently than those OFF medication.

This effect was independent of drug state during initial learning and appears to reflect a facilitation of generalization for learnt

information. This inference is bolstered by our observation that neural activity in nucleus accumbens and ventromedial prefrontal

cortex, measured during simultaneously acquired functional magnetic resonance imaging, represented learnt stimulus values

during performance. This effect was expressed solely during the ON state with activity in these regions correlating with better

performance. Our data indicate that dopamine modulation of nucleus accumbens and ventromedial prefrontal cortex exerts a

specific effect on choice behaviour distinct from pure learning. The findings are in keeping with the substantial other evidence

that certain aspects of learning are unaffected by dopamine lesions or depletion, and that dopamine plays a key role in

performance that may be distinct from its role in learning.
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Introduction
Dopamine is strongly implicated in reward signalling, playing a central

role in reward learning in animals (Wise and Rompre, 1989; Schultz

et al., 1997; Schultz, 1998; Wise, 2004; Bayer and Glimcher, 2005)

and humans (Pessiglione et al., 2006). Accumulating evidence from

pharmacological interventions in healthy subjects (Pessiglione et al.,

2006) and patients with Parkinson’s disease studied ON and OFF

medication (Frank et al., 2004, 2007b) indicate that manipulating

dopamine neurotransmission in humans influences reward-related

reinforcement learning and decision-making. An assumption arising

from these data is that dopamine exerts a direct effect on instrumental

learning, a form of learning that links actions and their outcomes. At a

mechanistic level, activity in dopaminergic neurons express a predic-

tion error believed to mediate learning and updating the reward value

of predictive stimuli (Schultz et al., 1997). The idea that prediction

doi:10.1093/brain/aws083 Brain 2012: Page 1 of 13 | 1

Received August 10, 2011. Revised February 1, 2012. Accepted February 3, 2012.
� The Author (2012). Published by Oxford University Press on behalf of the Guarantors of Brain.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0),

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 Brain Advance Access published April 15, 2012
 at U

niversity C
ollege L

ondon on A
pril 25, 2012

http://brain.oxfordjournals.org/
D

ow
nloaded from

 

http://brain.oxfordjournals.org/


error-based learning is computationally implemented via activity

patterns within the dopaminergic system is supported by a substantial

body of experimental work across a range of species (Haber and

Knutson, 2010).

However, the functions of dopamine are known to extend

beyond reinforcement learning. First, considerable evidence points

to a contribution to the control of Pavlovian approach behaviour

(Ikemoto and Panksepp, 1999; Parkinson et al., 2002; Day and

Carelli, 2007) as well as in motivational engagement and vigour

(Ahlenius et al., 1977; Beninger and Phillips, 1981; Berridge and

Robinson, 1998; McClure et al., 2003; Niv, 2007; Niv et al., 2007;

Bardgett et al., 2009; Lex and Hauber, 2010; Boureau and Dayan,

2011). These influences are distinct from learning (Yin et al., 2008),

even in cases where they arise from a signal that actually reports a

prediction error (McClure et al., 2003). Secondly, many aspects of

appetitive learning can progress normally in the absence of dopa-

mine, most dramatically in the case of genetically engineered

dopamine-deficient mice (Palmiter, 2008). Thirdly, a number of

previous studies that investigated the effect of dopamine in

humans could not easily distinguish between action learning and

action performance (Frank et al., 2004, 2007b; Pessiglione et al.,

2006). Consequently, in assessing dopamine’s impact on behaviour,

it is necessary to distinguish influences on learning from influences

on the modulation of the expression of learning, i.e. an effect on

actual choice behaviour or performance.

Parkinson’s disease is a common neurological disorder character-

ized by neuronal loss in the substantia nigra (Edwards et al., 2008),

which leads to depleted levels of striatal dopamine (Koller and

Melamed, 2007). Parkinson’s disease results in deficits across several

cognitive domains, including probabilistic learning and classification

tasks (Knowlton et al., 1996; Graef et al., 2010), with dopamine

replacement therapy having distinct effects on these behaviours.

For example, when Parkinson’s disease patients are OFF dopamine

replacement therapy, it is reported that their expression of learning

from positive feedback is impaired (Frank et al., 2004, 2007b), while

when ON dopamine replacement therapy they show impaired per-

formance in learning from negative outcomes (Frank et al., 2004;

Bodi et al., 2009). This behavioural pattern has been attributed to

increased levels of striatal dopamine when patients are ON medica-

tion boosting prediction error signals resulting in enhanced learning

from positive outcomes. In contrast, a prevention of dips in dopa-

minergic activity, as occurs with omission of expected outcomes, is

suggested to worsen learning from negative outcomes (Frank et al.,

2004; Frank, 2007b; Maia and Frank, 2011).

Here, we sought to dissociate dopaminergic effects on learning

from effects on choice (performance) by acquiring neuroimaging

data during a reinforcement learning task in patients with

Parkinson’s disease. We employed a two-stage learning task that

involves separate phases of (i) acquisition and (ii) a subsequent

performance testing involving generalization of learning. This

task has previously been shown to provide an effective means

of examining the neural mechanisms underlying cognitive deficits

in Parkinson’s disease (Frank et al., 2004, 2007b). These previous

studies focused on learning, while here we also probed the effect

of dopaminergic status (ON medication, and OFF medication) on

test ‘performance’, i.e. on the expression of learning during

behavioural extinction. Crucially, this dissociation between learning

and performance has not been explicitly explored in previous

human investigations.

Materials and methods
The study and its procedures were approved by the National Research

Ethics Service, The Joint UCL/UCLH Committees on the Ethics of

Human Research (Committee A).

Participants
Fourteen early-to-moderate stage (Hoehn and Yahr stage: mean 1.69,

SE 0.26) patients with idiopathic Parkinson’s disease (10 males) (as per

UK Brain Bank criteria) aged between 44 and 81 years (mean 61.8

years, SE 3.3 years) participated in and completed the study. Patients

were recruited from the movement disorder clinic at the National

Hospital for Neurology and Neurosurgery.

We obtained written informed consent from all subjects and trans-

port costs were reimbursed.

Subjects were interviewed for psychiatric and neurological history as

well as current and past medication. They were also examined by a

clinician and asked to complete several questionnaires, including a

health questionnaire, a Mini-Mental State Examination and an impulse

control disorder screening questionnaire (Supplementary Table 1).

One subject had difficulty understanding the task demands and

adopted an incorrect strategy for stimulus selection, whereby he

explicitly believed the incorrect stimulus to be correct and continued

to select it despite ongoing negative feedback resulting in significantly

worse than chance performance. Data from this subject are not

included in any analyses. Another subject was excluded from the ima-

ging analysis due to an incidental finding of abnormally large ven-

tricles, compromising normalization of this data set to a standard

coordinate space. Hence, 13 subjects were analysed behaviourally

and 12 subjects were analysed in the functional MRI study.

Twelve of the subjects were right-handed and one was left-handed.

All were fluent English speakers. The duration of Parkinson’s disease

varied from 1 to 10 years from the time of initial diagnosis (mean 4.9

years, SE 0.96 years). Subjects had no history of other major

neurological or psychiatric disease. Patients were all on levodopa/car-

bidopa combinations; eight patients were also on dopamine agonists;

total daily dose of levodopa/carbidopa varied from 50/12.5 mg to

1000/255 mg (mean 400/100 mg, SE 74.4/18.6 mg) (Supplementary

Table 2). We did not recruit patients on trihexyphenidyl, benzhexol or

high-dose tolterodine due to possible confounding effects of high-dose

anti-cholinergic medication, or patients on amantadine due to its effect

on multiple neuromodulators.

Stimuli
We used a version of the generalization task introduced by Frank et al.

(2004, 2007b). Stimuli consisted of Hiragana symbols presented in

white fonts on a black background where each stimulus had a differ-

ent probability of being correct when selected. These probabilities

ranged from 80% to 20%. In the first, or acquisition, stage of the

task, the symbols were paired to form three sets: the 80% stimulus

was paired with the 20% stimulus; the 70% stimulus was paired with

the 30% stimulus and the 60% stimulus with the 40% stimulus. The

sets were presented in a randomized order. In the second, or perform-

ance phase, along with all the training pairings, the best stimulus

(the one with 80% chance of being correct) and the worst stimulus
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(the one with only 20% chance of being correct) were presented in

novel pairings with all the other stimuli (Fig. 1).

Procedure

Overview

Each patient participated in three separate sessions on different days,

which were a minimum of 1 week apart (i.e. a within-subject design).

Each session involved different Hiragana symbols (Fig. 1). All patients

performed the task in three different drug states (Supplementary Table

3): acquisition and performance in the ON state (ON–ON), acquisition

and performance in the OFF state (OFF–OFF) and acquisition of the

stimulus contingencies in the OFF state but performance in the ON

medication state (OFF–ON). The order of the different drug states in

which patients performed the task was randomized. The OFF state in

two of the conditions was achieved by a minimum of 12 h withdrawal

from all dopaminergic medication and omission of all slow release

preparations for a minimum of 18 h. On the remaining day

(ON–ON), patients were asked to take their morning dopaminergic

medication as usual. We were unable to test patients in the

ON–OFF state, i.e. acquisition in the ON state and performance in

the OFF state, due to the half-life of levodopa/carbidopa combin-

ations, which would require a minimum of 7.5 h to be metabolized

and excreted resulting in too long an interval between the acquisition

and performance phases. All patients were tested at similar times in

the morning to equalize washout times and to control for diurnal

symptom fluctuations.

To familiarize subjects with the structure of the task, we undertook

a short practice block before the first scanning session. During the

practice session, patients worked on an identical task as in the main

study except for the fact they were presented with different Hiragana

symbols. The main session began with two functional scans (Scans 1

and 2, acquisition sessions). Most subjects completed a third acquisi-

tion session on a laptop. In OFF–ON condition, patients took their

medication following this training. All patients then waited for

45–60 min before undergoing a third functional scanning session

(Scan 3, performance session) for performance testing.

On one of the 3 days, after the training and performance stages

were complete, the patients also underwent a structural scan, a

Mini-Mental State Examination and completed questionnaires as

detailed above.

Acquisition phase of the task: Scans 1 and 2

Scan sessions 1 and 2 (acquisition phase of the task), lasted �16 min,

and consisted of 120 trials of 8 s each. On each trial, two Hiragana

characters appeared on the screen side by side, presented via a mirror

mounted on the head coil. Subjects’ task was to select one of the

characters on each trial by pressing either the right or the left key

on a button box. The stimuli remained on the screen for 4 s, followed

Figure 1 Task. Stimuli consisted of Hiragana symbols which were presented in white fonts on a black background. Each stimulus had a

different probability of being correct when selected. In the first, or acquisition stage of the task, symbols were paired to form three ‘training

pairs’ that remained the same throughout this phase: the 80% stimulus was paired with the 20% stimulus (highlighted for illustration

purposes with a red border); the 70% stimulus was paired with the 30% stimulus (blue border) and the 60% stimulus with the 40% stimulus

(green border). Subjects selected the left or right stimulus by button presses and, during the acquisition phase, also received information

about the outcome (correct/incorrect). In the second, or performance phase, along with all the training pairings, the best stimulus (the one

with 80% chance of being correct) and the worst stimulus (the one with only 20% chance of being correct) were presented in novel pairings

with all the other stimuli. During this phase subjects did not receive information about the outcome of their choice. During this phase,

subjects were also presented again with the three sets of ‘training pairs’, which were interspersed with the novel pairs.

Dopamine and performance in Parkinson’s disease Brain 2012: Page 3 of 13 | 3
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by presentation of the outcome (either ‘correct’ or ‘incorrect’) for 2 s.

The likelihood of being correct or incorrect was probabilistically deter-

mined for each stimulus (see above). If subjects did not respond within

4 s that the stimuli were on the screen the message ‘no key pressed’

was presented and the trial was excluded from the analysis. A fixation

cross was presented for 2 s during the intertrial interval.

Performance phase of the task: Scan 3

Scanning session 3 (performance phase) was 10-min long and con-

sisted of 110 trials of 6 s each. Similar to the acquisition phase, two

Hiragana characters were presented side by side on each trial and

subjects had to select one of the characters by pressing either the

right or the left key. As before, characters remained on screen for

4 s. This time subjects did not receive feedback after making a re-

sponse and the trial instead progressed immediately to the presenta-

tion of a fixation cross during the 2 s intertrial interval.

Importantly, in addition to the stimulus pairs used during training

(80% with 20%; 70% with 30% and 60% with 40%), the symbols

were shown in eight novel pairings. Four of the pairings had the ‘best’

stimulus paired with all other stimuli (80% with 70%; 80% with 60%;

80% with 40% and 80% with 30%), and the other four pairings

compared the ‘worst’ stimulus to all other stimuli (20% with 70%;

20% with 60%; 20% with 40% and 20% with 30%). All pairs were

presented 10 times each in randomized order, resulting in 110 pairs

overall (Fig. 1).

Magnetic resonance imaging
The study was conducted at the Wellcome Trust Centre for

Neuroimaging at University College London using a 3 T (Siemens

TRIO) scanner equipped with a Siemens 12-channel phased array

head coil. Anatomical images were acquired using modified equilibrium

Fourier transform T1 gradient echo scans, which were followed by

1-mm thick axial slices parallel to the anterior commissure–posterior

commissure plane. Functional scans used a gradient echo sequence;

repetition time, 2.04 s; echo time 30 ms; flip angle 90�; matrix size

64 � 64; field of view 192 mm; slice thickness, 2 mm. A total of 30

axial slices were sampled. The in-plane resolution was 2 � 2 mm.

Functional imaging data were analysed using statistical parametric

mapping software (SPM5; Wellcome Trust Centre for Neuroimaging;

http://www.fil.ion.ucl.ac.uk/spm). During preprocessing, images were

realigned with the first volume (after discarding six volumes to allow

for T1 equilibration effects), and unwarped. For each subject, the mean

functional image was coregistered to a high resolution T1 structural

image. This image was then spatially normalized to standard Montreal

Neurological Institute (MNI) space using the ‘unified segmentation’

algorithm available within SPM5 (Ashburner and Friston, 2005) with

the resulting deformation field applied to the functional imaging data.

These data were then spatially smoothed using an isotropic 6-mm

full-width half-maximum Gaussian kernel.

Data analysis

Behavioural analysis

Acquisition sessions 1–3

All subjects reached at least 65% accuracy for the easiest pairing or

after completion of three acquisition sessions had a minimum accuracy

of 60% over all training pairs before proceeding to the performance

phase. Accuracy levels in the acquisition phase were then separately

computed for each drug state by averaging the overall accuracy across

all acquisition sessions on that day. Accuracy was defined as

percentage of trials on which the correct stimulus, i.e. the stimulus

with the highest probabilistic contingency in each training pair was

selected. We then compared overall accuracy during acquisition in

the ON condition to overall accuracy in the two OFF medication

states using paired t-tests and a linear mixed model to detect differ-

ences in accuracy in the acquisition phase between different drug

states. We also tested for differences in the acquisition rate between

the different drug states by comparing learning rates in a reinforce-

ment learning model (see below). For this test, we individually fitted

the parameters of the reinforcement learning model to subjects’

choices in the ON and OFF medication condition, comparing the re-

sulting learning rates using a paired t-test.

Performance session

Data from the performance session were separated into trials in which

the ‘best’ stimulus (80% chance of being correct) was presented, and

trials in which the ‘worst’ stimulus (20% chance of being correct) was

presented. We calculated the percentage of times subjects picked the

best stimulus and the percentage of times the subjects avoided the

worst stimulus in these novel pairings and tested for any differences in

performance between the different medication conditions.

Reinforcement learning model

We used a simple prediction error-based reinforcement learning model

(Sutton and Barto, 1998) to estimate a trial-by-trial measure of stimu-

lus value, and thus an outcome prediction error � defined as the dif-

ference between the actual observed outcome R (correct/

incorrect = 1/0) and the current expected value of the chosen

stimulus.

For each pair of stimuli A and B, the model estimates the expected

values of choosing A, (QA) and choosing B (QB), on the basis of in-

dividual sequences of choices and outcomes. The expected values

were set to zero before learning. After every trial t4 0 the value of

the chosen stimulus (e.g. ‘A’) was updated according to the rule

QA(t + 1) = QA(t) + � � �(t). The outcome prediction error is the dif-

ference between the actual and the expected outcome,

�(t) = R(t) � QA(t) with the actual outcome being either ‘Correct’ or

‘Incorrect’ (1 or 0). Values of stimuli that were not shown on a trial

were not updated.

Given the expected values, the probability (or likelihood) of the

observed choice was estimated using the softmax rule:

PA(t) = exp[QA(t)/�]/{exp[QA(t)/�] + exp[QB(t)/�]}. The parameters �

(learning rate) and � (temperature) were adjusted to maximize the

likelihood of the actual choices under the model, for all subjects.

Trial-by-trial outcome prediction errors estimated by the model were

then used as parametric regressors in the imaging data.

We also considered an alternative reinforcement learning model,

which allowed for separate learning rates �+ on positive updates

(increasing the predicted value) and �� on negative updates

(decreasing the predicted value). We then compared model likelihoods

of the models with separate learning rates and the original reduced

model on an individual subject level using Bayesian Information

Criterion (BIC), which corrects for the different complexity in models

(smaller values indicate better fit) (Schwarz, 1978), and population

level using Bayesian model comparison (Stephan et al., 2009).

Functional magnetic resonance imaging: whole-brain
general linear model parametric analysis

Acquisition session

Functional MRI time series were regressed onto a composite general

linear model containing four regressors: trial onset time (the
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appearance of the hiragana characters), outcome onset time, motor

response time and fixation cross presentation time. The outcome onset

was parametrically modulated by the prediction error as estimated by

the reinforcement learning model. We also composed another general

linear model in which there were four regressors: correct trial onset

time, incorrect trial onset time, motor response time and fixation cross

presentation time. The actual value of the chosen cue in each trial was

entered as a parametric modulator of the two trial onset regressors.

Performance session

Four regressors were entered into the functional MRI model: correct

trial onset time, incorrect trial onset time, motor response time and

fixation cross presentation time. The actual value of the chosen cue in

each trial was entered as a parametric modulator of the two trial onset

regressors.

The regressors were convolved with the canonical haemodynamic

response function, and low frequency drifts were excluded with a

high-pass filter (128-s cut-off). Short-term temporal autocorrelations

were modelled using an autoregressive [AR(1)] process. Motion cor-

rection regressors estimated from the realignment procedure were

entered as covariates of no interest. Statistical significance was as-

sessed using linear compounds of the regressors in the general linear

model, generating statistical parametric maps of t-values across the

brain for each subject and contrast of interest. These contrast

images were then entered into a second-level random-effects analysis

using a one-sample t-test against zero.

Anatomical localization was carried out by overlaying the t-maps on

a normalized structural image averaged across subjects, and with ref-

erence to an anatomical atlas (Naidich et al., 2009). All coordinates are

reported in MNI space (Mazziotta et al., 1995).

Region of interest analysis

We extracted data for all region of interest analyses using a

cross-validation leave-one-out procedure: we re-estimated our main

second-level analysis 12 times, always leaving out one subject.

Starting at the peak voxel for the chosen cue value signal in ventro-

medial prefrontal cortex and nucleus accumbens, which was identified

by looking over all correct trials (in both the ON and OFF drug states),

we selected the nearest maximum in these cross-validation

second-level analyses. Using that new peak voxel, we then extracted

the data from the left-out subject and calculated a representative time-

course for each region of interest as first eigenvariate from data in all

voxels within a 4-mm sphere around that peak. We then performed a

small volume correction on the striatal activations in the putamen

using an anatomical region of interest defined according to the

Talairach Daemon atlas (Lancaster et al., 1997) using the SPM WFU

PickAtlas tool (Maldjian et al., 2003).

Results
We used a within-subject design to study a single group of pa-

tients with Parkinson’s disease [early-to-moderate stage (Hoehn

and Yahr stage: mean 1.69, SE 0.26)] in a generalization task

introduced by Frank et al. (2004, 2007b) in three separate drug

states (Fig. 1). We employed a within-subject design given the

inherent difficulty in accurately matching patients with

Parkinson’s disease with different disease severity. We also believe

that this design allowed us to minimize and control, as far as

possible, for individual cognitive and genetic differences that

may exist in our cohort, allowing us to look at the within-subject

effects of drug on behaviour. In parallel with our behavioural

analysis, we also acquired neural data using functional MRI.

Thus, this design enabled us to explore the effect of dopamine

on behaviour and on the brain by testing patients in three differ-

ent drug states: acquisition and performance ON medication; ac-

quisition and performance OFF medication and acquisition in an

OFF medication state and performance in an ON medication state.

The inclusion of the latter condition specifically enabled us to

probe whether dopamine’s effects are expressed during task ac-

quisition (learning) or task performance.

Acquisition phase

Behavioural results

At the end of the acquisition phase, average choice accuracy on

the training pairs did not differ between groups across the differ-

ent drug states [paired t-tests: comparing ON–ON with OFF–ON:

t(1,12) = 0.15, P = 0.87; comparing ON–ON with OFF–OFF:

t(1,12) = 0.095, P = 0.92; comparing OFF–ON with OFF–OFF:

t(1,12) = �0.079, P = 0.93] (Supplementary Table 4). Similarly,

we found no significant difference in learning rates between pa-

tients when they were in an OFF compared to ON medication

state [ON: mean 0.25, SE 0.02; OFF: mean 0.24, SE 0.01;

paired t-test t(1,12) = 0.117, P = 0.90] (Supplementary Table 5),

or in the number of sessions required to reach criteria [ON: mean

1.23, SE 0.12; OFF: mean 1.38, SE 0.16 paired t-test

t(1,12) = �0.69, P = 0.50]. When the three types of training

pairs were examined separately, there were no differences in

choice accuracy between the different drug states. When we com-

pared log evidences from a learning model with separate learning

rates for positive and negative updates (posneg) with a single

learning rate model (single), we found that the more complex

model did not explain behaviour any better than the simple

model (average BICsingle = 260.9 versus BICposneg = 261.4; poster-

ior probability Psingle = 0.72; exceedance probability single versus

posneg model P40.99). Thus, subjects’ behaviour could not be

explained better with separate learning rates for positive and

negative updating.

Neuroimaging data

Here, we examined brain responses that correlated with outcome

prediction errors computed from a reinforcement learning model,

fit to subjects’ behaviour during the acquisition phase. We found

that bilateral responses in the striatum (central coordinates right

putamen x = 26, y = 0, z = �4; left putamen x = �28, y = �12,

z = �2) (Fig. 2) strongly correlated with reward prediction errors

[small volume corrected using anatomical region of interest for

false discovery rate (FDR); left putamen P = 0.007, right putamen

P = 0.006], consistent with many previous results (McClure et al.,

2003; O’Doherty et al., 2003; Schonberg et al., 2010). However,

similar to our behavioural findings, we found no differences in

prediction error-related brain activation between the different

drug states during acquisition [paired t-test ON compared with

OFF: t(1,11) = �0.076, P = 0.46] (see Supplementary Table 6

for a whole-brain activation table for prediction error-related ac-

tivity across all drug conditions). We separately examined neural

responses to positive and negative prediction errors but did not
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find any differences between the different drug states [paired

t-tests comparing positive prediction errors ON compared with

OFF: t(1,11) = �0.083, P = 0.42; and comparing negative predic-

tion errors ON with OFF: t(1,11) = �0.051, P = 0.614]. Perhaps

most surprisingly, at the time of cue onset, we did not observe any

correlation between brain activity and the value of the chosen cue

in any of the drug states.

Performance phase

Behavioural results

In the performance phase, after patients had acquired the task

contingencies, along with all the training pairings, we presented

the best (the one with 80% chance of being correct) and worst

stimulus (the one with only 20% chance of being correct) in novel

pairings with all the other stimuli (Fig. 1). We found that patients

ON their dopamine replacement therapy performed significantly

better than patients OFF dopamine replacement therapy [main

effect comparing accuracy of the mean of ON–ON/OFF–ON with

OFF–OFF, paired t-test, t(1,12) = 2.8, P = 0.01]. Crucially, a separ-

ate examination of the three drug states revealed a main effect of

drug on performance but not on acquisition (Fig. 3A). Subjects who

acquired the contingencies in an OFF medication state and received

their dopamine replacement therapy after the acquisition phase, but

before the performance phase, had the same level of overall accur-

acy as subjects who both acquired the contingencies ON medica-

tion and performed ON medication [paired t-test comparing ON–

ON with OFF–ON, t(1,12) = �0.03, P = 0.97]. Both the ON–ON

and OFF–ON groups were significantly more accurate than the

OFF–OFF group [paired t-test comparing ON–ON with OFF–OFF,

t(1,12) = 2.17, P = 0.05; and comparing OFF–ON with OFF–OFF,

t(1,12) = 2.28 P = 0.04]. A mixed effects linear model showed a

significant effect of drug state on performance accuracy at the

performance phase [F(1,36) = 5.38, P = 0.02] but not at the

acquisition phase [F(1,36) = 0.002, P = 0.96].

In addition to the novel pairings, we also presented subjects with the

three stimulus pairs on which they had been trained during acquisition.

Interestingly, we found no difference in accuracy levels on these train-

ing pairs across the different drug states [paired t-tests comparing

ON–ON with OFF–ON, t(1,12) = �1.36, P = 0.19; comparing ON–

ON with OFF–OFF, t(1,12) = �0.64, P = 0.52; comparing OFF–ON

with OFF–OFF t(1,12) = 1.26, P = 0.23] (Fig. 3B), even when the

three types of training pairs were examined separately. Indeed,

there was no difference in the accuracies for training pairs versus

novel pairs in ON–ON or OFF–ON drug states [paired t-tests compar-

ing training pair accuracy with novel pair accuracy in ON–ON,

t(1,12) = 0.61, P = 0.55 and OFF–ON drug states, t(1,12) = �1.75,

P = 0.10]. However, as expected, in the OFF–OFF drug state, accur-

acy for training pairs was significantly higher than for novel pairs

[t(1,12) = �2.28, P = 0.04]. Note that our results cannot be explained

by a faster extinction effect in the patients when they were OFF dopa-

mine replacement therapy. An effect of this sort would predict an

overall gradual performance decrement over time. Instead, we

found that patients OFF medication maintained their performance in

the training pairs, which were randomly interspersed with the novel

pairs, throughout the test session. One difference between our study

and that of Frank et al. (2004, 2007b) is that in our study there was an

added time delay between acquisition and transfer, whilst L-DOPA

took effect. Since dopamine influences processes such as working

memory (Sawaguchi and Goldman-Rakic, 1991; Watanabe et al.,

1997; Fuster, 2001; Stuss and Knight, 2002) and enhancing dopamine

signalling will have had an effect on these processes (Sawaguchi,

2001; Wang et al., 2004; Gibbs and D’Esposito, 2005; Cools and

D’Esposito, 2011), one could argue that the poor generalization in

the OFF group could stem from the delay. However, we believe this

is unlikely given evidence that the OFF group performed just as well as

the ON group on training pairs.

Figure 2 Prediction error-related activity during acquisition. (A) Brain activity in putamen correlated with magnitude of outcome

prediction errors across all trials during the acquisition phase. Activations are thresholded at P50.001 uncorrected. (B) Correlation

between outcome prediction errors and blood oxygen level-dependent activity in the two different drug states. Data in the ‘ON’ state was

averaged across the two acquisition sessions performed in the scanner under this medication state and data in the ‘OFF’ state across the

four acquisition sessions performed in this medication state. Error bars represent SEM. n.s. = not significant.
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We next tested for differential performance in selecting the best,

and avoiding the worst, stimulus within the novel pairings.

Interestingly, being in the ON dopamine replacement therapy state

during the performance phase selectively improved accuracy in

selecting the best stimulus compared to avoiding the worst stimulus

for novel stimuli pairs [paired t-tests comparing ON accuracy for

picking the best compared with avoiding worse stimulus

t(1,12) = 2.16, P = 0.05]. This performance difference between

selecting the best and avoiding the worst stimulus was not evident

when subjects both acquired and performed the task in the OFF

medication state [paired t-tests comparing OFF accuracy for picked

best compared with avoiding worse stimulus t(1,12) = 0.58,

P = 0.56], although their overall performance was worse (Fig. 4).

Of note, there was no interaction between the medication status

(ON versus OFF) during performance and the ability to pick the

best compared with avoiding the worst stimulus as has previously

been reported (Frank et al., 2004, 2007b). We only found this se-

lective improvement in picking the best stimulus compared with

avoiding the worst stimulus within the ON group. We observed the

same pattern when analysing the ON–ON and OFF–ON groups sep-

arately. However, although a trend was evident this did not reach full

significance [paired t-tests comparing ON accuracy for picking the

best compared with avoiding worse stimulus in the ON–ON group

alone, t(1,12) = 1.5, P = 0.15; and in the OFF–ON group alone,

t(1,12) = 1.68, P = 0.11]. When we separately compared accuracy

for picking the best stimuli, and for avoiding the worst stimuli, across

groups there were no significant differences [paired t-tests compar-

ing ‘pick best’ accuracy; ON–ON with OFF–ON, t(1,12) = �0.26,

P = 0.98; comparing ON–ON with OFF–OFF, t(1,12) = 1.79,

P = 0.09; comparing OFF–ON with OFF–OFF, t(1,12) = 1.73,

P = 0.1; paired t-tests comparing ‘avoid worse’ accuracy: ON–ON

with OFF–ON, t(1,12) = �0.07, P = 0.94; comparing ON–ON with

OFF–OFF, t(1,12) = 1.27, P = 0.22; comparing OFF–ON with

OFF–OFF, t(1,12) = 1.6, P = 0.13]. This indicates that when subjects

were ON dopaminergic medication there was an asymmetry in

performance between picking the best compared with avoiding the

worst stimuli. Our data do not show that medication selectively

improves generalization only for the best stimuli but rather that it

affects the ability to generalize learnt information overall. When we

examined reaction times, we found that across all groups there was a

significant difference in reaction times between pick best and avoid

worse stimuli trials [paired t-test, t(1,12) = �2.52, P = 0.027] with

subjects being faster for the pick best trials. There were, however, no

significant between group differences in reaction times.

Neuroimaging data

To investigate possible neural mechanisms underlying the observed

behavioural effects during the performance phase, we next tested for

differences in the degree at which functional MRI blood oxygen level-

dependent activity correlated with decision variables between differ-

ent drug states. We tested whether neural representations of stimulus

values at the time of cue presentation differed between drug states.

We found that blood oxygen level-dependent activity in nucleus

accumbens (central coordinates x = 8, y = 12, z = �4) correlated

with the value of the chosen cue, but this effect was only evident in

the ON medication state for correct novel trials [one sample t-test,

t(1,11) = 2.7, P = 0.01]. Cue-evoked blood oxygen level-dependent

activity did not correlate with the value of the chosen cue when

patients were OFF their dopamine replacement therapy [one sample

t-test, t(1,11) = 0.98, P = 0.34] or made an incorrect choice [one

sample t-test ON incorrect, t(1,11) = �2.12, P = 0.06; OFF incorrect

t(1,11) = �0.06, P = 0.94] (Fig. 5A and B). We found an identical

effect in ventromedial prefrontal cortex (x = �2, y = 38, z = 0),

where blood oxygen level-dependent activity varied with the value

of the chosen cue when patients were both ON medication and made

the correct choice [one sample t-test, t(1,11) = 2.52, P = 0.02], but

Figure 3 Accuracy during performance phase. (A) Accuracy in novel pairings was significantly higher when subjects were ON dopamine

replacement therapy during the performance phase than when they were OFF. This effect is independent of drug state during the previous

acquisition phase. Shown is the combined accuracy in selecting the best stimulus and avoiding the worst stimulus over the three drug

states when subjects had to pick the stimulus with the highest likelihood of being correct when presented in novel parings. ON–ON session

(blue), when patients took their usual dopamine replacement therapy; OFF–ON session (blue/red stripe), when patients took their

dopamine replacement therapy only after completing the acquisition phase; OFF–OFF session (red), when patients abstained from their

dopamine replacement therapy throughout the task. (B) Accuracy in selecting the better stimulus among the training pairs during the

performance phase did not differ between drug states. n.s. = not significant.
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not when they were OFF their dopamine replacement therapy [one

sample t-test, t(1,11) = 0.31, P = 0.76], or made an incorrect choice

[one sample t-test ON incorrect, t(1,11) = �1.28, P = 0.22; OFF

incorrect t(1,11) = 0.76, P = 0.46] (Fig. 5C and D). These findings

show that activity in nucleus accumbens and ventromedial prefrontal

cortex successfully reflect the values of the most rewarding cue only in

an ON medication state, a characteristic that precisely mirrors patients’

improved performance in this state. We found that this effect was not

driven solely by the ON–ON group. When the OFF–ON group are

examined separately, cue-evoked blood oxygen level-dependent

activity correlated with the value of the chosen cue with patients

made the correct choice both in the nucleus accumbens [one sample

t-test, t(1,11) = 2.86, P = 0.015] and in the ventromedial prefrontal

cortex [one sample t-test, t(1,11) = 2.93 P = 0.014], however, when

we directly compared the activations in OFF–ON with the OFF–OFF

group this did not reach statistical significance [paired t-test comparing

OFF–ON with OFF–OFF, nucleus accumbens t(1,11) = 1.62,

P = 0.13, ventromedial prefrontal cortex t(1,11) = 1.02, P = 0.32].

Akin to the neuroimaging findings from the acquisition phase,

when we examined value-related neural activity at the time of cue

onset during presentation of the training pairs at the performance

phase, we did not find a significant correlation between blood

oxygen level-dependent activity and the value of the chosen cue

in either of the drug states.

Discussion
We show a striking effect of dopamine replacement therapy on

the ability of patients with Parkinson’s disease to select the correct

stimulus in a probabilistic reinforcement learning task. Importantly,

our data show that medication status at the acquisition task phase

does not impact successful task learning. Instead, the data show

that the critical factor is medication status at the performance

phase, by which time stimulus values must already have been

successfully acquired. The findings challenge a proposal that the

impact of dopaminergic status on this form of decision-making

solely reflects its involvement in learning.

Our key observation was that patients who were OFF dopamine

during the second task phase performed significantly worse when

stimuli occurred in novel pairings. However, dopaminergic drug

state did not impact their ability to choose when confronted with

pairs on which they had been trained in the first phase of the task.

This indicates that the subjects OFF medication could successfully

retrieve learnt contingencies but were unable to use this knowledge

to make correct choices when they had to select between novel

stimulus pairings. There was no difference in learning rates or

accuracy during the acquisition phase between the different drug

conditions, indicating that dopamine did not affect the ability to

learn stimulus values. Consequently, our data indicate that dopa-

mine replacement therapy influenced the ability to generalize, in a

context, where subjects needed to select the best stimulus in a state

characterized by presentation of novel pairings.

A mechanistic basis for our behavioural findings is provided by

our functional MRI data, which specifically addressed the neural

representation of stimulus value during the performance phase.

Even when subjects had learned stimuli OFF dopamine replacement

therapy, and were only given their dopamine replacement therapy

after learning had occurred, activity in nucleus accumbens and

ventromedial prefrontal cortex encoded the value of the chosen

stimulus during the performance phase, allowing the brain to com-

pare those values in novel pairings. This suggests that, in contrast

Figure 4 Differences in accuracy at picking best compared with avoiding worst stimuli. ON state during performance phase selectively

improved accuracy for picking the best stimulus (the 80%) compared to avoiding the worst stimulus (the 20% stimulus) in novel pairings.

The data in the ‘ON’ state comes from the two performance bouts performed in this medication state and the data in the ‘OFF’ state

comes from the single performance bout performed in this medication state.
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to previous accounts (Schultz et al., 1997; O’Doherty et al., 2003;

Bayer and Glimcher, 2005; Pessiglione et al., 2006), reduced dopa-

mine availability during learning did not impair value acquisition.

Instead, our data show that decreased dopamine during perform-

ance resulted in an impoverished neural representation of stimulus

value. This we suggest impaired an ability to compare cue values in

novel pairings, in other words to generalize from learnt information.

On the other hand, non-novel pairings (i.e. the acquisition pairs)

could still be answered correctly if a stimulus–response association

had been learned; this would not depend directly on value repre-

sentations [and could for example be achieved by fixed stimulus–

response associations, or explicit (episodic) memory retrieval], and

could therefore operate successfully even when dopamine levels

were low. This explanation best accounts for why subjects who

were OFF medication throughout the task were equally successful

at choosing the best stimuli in the context of the training pairs. It is

of interest that the two structures highlighted in our data, the

nucleus accumbens and ventromedial prefrontal cortex, are strongly

associated with various forms of value prediction and prediction

errors in reinforcement learning contexts (Matsumoto et al.,

2003; Day and Carelli, 2007; Luk and Wallis, 2009). The pattern

of findings we observed, whereby stimulus value correlated with

activity in these two regions in the ON state, implies that these

brain areas can successfully represent the reward value of cues

when patients are ON medication enabling successful performance

for novel pairings. However, when this signal is degraded as seen in

the OFF state, performance is impaired.

The fact that patients in all three drug states performed equally

well when they were selecting the best cue for sets on which they

had been previously trained further indicates that dopamine did

not influence patients’ accuracy by a direct influence on learning.

Levodopa medication in patients with Parkinson’s disease has

previously been shown to have a positive effect on generalization

of learnt information in novel contexts; however, those observa-

tions were on a background of impaired learning and therefore

crucially different from our current findings (Myers et al., 2003;

Shohamy et al., 2006). Of course, many different systems are

likely to be involved in learning, only some of which depend

directly on dopamine (Beninger, 1983; Dickinson et al., 2000;

Daw et al., 2005; Palmiter, 2008), and we cannot discount the

Figure 5 Brain activity correlating with the value of the chosen cue during performance phase. (A) Brain activity in right nucleus

accumbens (R NAc) correlated with the value of the chosen cue. Analysis performed over all correct trials (both ON and OFF) in a context

where novel parings are presented. (B) A differential analysis between drug states reveals this correlation was selective to the ON state.

(C) Brain activity in ventromedial prefrontal cortex (vmPFC) also correlated with the value of the chosen cue. Whole brain analysis

performed over all correct trials (both ON and OFF). (D) Similar to activity in nucleus accumbens, the correlation between blood oxygen

level-dependent values in ventromedial prefrontal cortex and the value of the chosen cue was only evident in ON but not in OFF state.

The error bars represent SEM. Thresholds in statistical parametric map images set to P50.005 uncorrected.
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possibility that a more complex learning task, such as one invol-

ving sequences of choices, might be necessary to fully reveal

effects of dopamine on learning.

Beyond its putative role in learning, dopamine is implicated in a

number of distinct processes related to motivation, including the con-

trol of Pavlovian conditioned responses and motivational vigour

(Dickinson et al., 2000; Parkinson, et al., 2002; Salamone et al.,

2003; Berridge, 2007; Mazzoni et al., 2007; Niv, 2007; Bardgett

et al., 2009; Beeler et al., 2010; Boureau and Dayan, 2011). The

strong influence of dopamine on performance, separate to that on

learning, is well known from animal data. For example, dopamine-

deficient mice retain the ability to pick the most rewarding drink

(sucrose compared with water) when presented in a discrimination

task (Cannon and Palmiter, 2003). Genetic dopamine-deficient mice

when tested in a maze task appears initially impaired but when subse-

quently treated with L-DOPA (Robinson et al., 2005), or caffeine

(Hnasko et al., 2005) can be shown to have learned, consistent with

an effect of dopamine on the expression of learning rather than on

learning itself. In addition, dopamine is implicated in controlling move-

ment rate and vigour (Ungerstedt, 1971; Salamone et al., 2003;

Cagniard et al., 2006) with dopamine depletion causing decreased

motivation to work for rewards under demanding reinforcement

schedules (Salamone and Correa, 2002; Niv, 2007).

Importantly, these other roles remain consistent with the fact

that phasic activity of dopamine neurons codes for an appetitive

prediction error (McClure et al., 2003). However, our study has

enabled us to disentangle these effects from a mere effect on

learning in a manner that provides compelling evidence that dopa-

mine has a specific role on the expression of learning that is

distinct from any effect it may have on learning itself. We are,

however, unable to comment on whether the drug manipulation,

which included the withdrawal and then reinstatement of both

L-DOPA and dopamine agonists, primarily exerted its main effect

on tonic or phasic levels of dopamine although we infer that it is

likely to have an effect on both.

The involvement of the nucleus accumbens during successful per-

formance is particularly notable, since this structure is well known to

control the immediate effects of dopamine on numerous aspects of

performance (Berridge and Robinson, 1998; Ikemoto and Panksepp,

1999; Berridge, 2009; Lex and Hauber, 2010). The nucleus accum-

bens is a site where the predicted values of stimuli are transformed

into preparatory Pavlovian responses under a modulatory influence

of dopamine (Berridge and Robinson, 1998). We suggest that a

preparatory response of approach is likely to be a key substrate for

the behavioural patterns we observed in our task (Dayan et al.,

2006). This provides another reminder of the complexities inherent

in a single neuromodulator (dopamine) supporting two apparently

independent roles, namely reporting on appetitive prediction errors

and influencing motivation and vigour (Ikemoto and Panksepp,

1999; Niv et al., 2007; Boureau and Dayan, 2011; Cools et al., 2011).

A further important finding is the engagement of ventromedial

prefrontal cortex in a context in which subjects made the correct

choice between novel pairings of stimuli in the ON state, but not

when subjects made incorrect choices in the ON state. This region

is strongly implicated in valuation (Gottfried et al., 2003; Seymour

and McClure, 2008; Boorman et al., 2009; Kable and Glimcher,

2009; Fitzgerald et al., 2010; Plassmann et al., 2010) across a

range of experimental manipulations, with mounting evidence

pointing to a specific role when subjects have to choose between

distinct options with different values (Padoa-Schioppa and Assad,

2006; FitzGerald et al., 2009; Wunderlich et al., 2010). This fits

neatly with our observation that this region was engaged when

subjects generated correct choices based upon an assessment of a

learnt value difference between novel pairings. However, our data

are intriguing in suggesting that the integrity of a dopamine input

to this region is important for this form of value-based decision.

Of course, we cannot be certain as to dopamine’s precise role in

our task. However, two possibilities are immediately apparent:

dopamine is either necessary for a stable value representation that

can support generalization, or alternatively, for taking the difference

between the values of the available stimuli in order to choose. We

were unable to dissociate whether the neural value correlates were

precursors to choice (stimulus values) or the output of the choice

process (chosen values) (Wunderlich et al., 2009). It remains an

open question for future research as to whether the deficit is due

to a misrepresentation of pre-choice values that are fed into a

decision comparator, or reflect a problem at the value comparison

stage itself or indeed a combination of both.

Our study involved testing patients with Parkinson’s disease,

which although providing the best human model of dopamine

depletion, there is by necessity the problem of whether observa-

tions in this population can be generalized to the healthy popula-

tion. Despite this caveat, our findings do lend support to the

hypotheses (Berridge and Robinson, 1998; Berridge, 2007) and

animal studies (Ahlenius et al., 1977; Beninger and Phillips,

1981; Wyvell and Berridge, 2000; Cannon and Palmiter, 2003;

Denenberg et al., 2004; Robinson et al., 2005) that stress a

major role for dopamine outside of learning.

A significant finding from our study is that when patients were

ON their dopamine replacement therapy, they were worse at

avoiding stimuli with the poorest probabilistic contingencies than

at choosing the stimuli with the best probabilistic outcomes. This is

in keeping with previous research showing a similar outcome

valence performance asymmetry, whereby patients ON their

dopamine replacement therapy are impaired at avoiding the

least rewarding stimuli (Frank et al., 2004, 2007b). It has been

postulated that this worsening in performance is due to ‘over-

dosing’ of the striatum, which interferes with the dips in dopamine

that express negative prediction errors (Frank et al., 2004, 2007b).

However, in our study, as in several others (de Wit et al., 2011;

Jocham et al., 2011), we did not find a direct effect of medication

on learning, and we postulate that the worsened performance

may reflect some other mechanism, perhaps an impaired expres-

sion of avoidance behaviour in a high dopamine state.

Of note, we did not find the interaction between medication

state and picking the best compared with avoiding the worst stimu-

lus that has been reported in some previous studies (Frank et al.,

2004, 2007b; Voon et al., 2010). We found an overall improve-

ment in performance when subjects were ON medication and an

asymmetry in this performance accuracy between picking the best

compared with avoiding the worst stimuli within this group.

We did not find a significant difference between picking the

best stimulus in the ON state and picking the best stimulus in

the OFF state. Thus, although we can conclude that when subjects
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were ON dopaminergic medication, there was an asymmetry in

performance between picking the best compared with avoiding

the worst stimuli, we cannot be certain whether this improvement

in performance in the ON compared with the OFF group is solely

due to an improved ability to select the most rewarding stimuli.

Since the OFF–OFF patients generalized so poorly, there remains a

possibility that we were unable to detect an asymmetry in

performance in the OFF group due to floor effects. However,

the clear asymmetry observed in the ON group is of interest as

it provides a hint as to where dopamine may exert an important

influence.

Several studies have also found differences in striatal activations

in response to wins and losses when comparing patients with

Parkinson’s disease with compulsive behaviour ON medication to

patients with idiopathic Parkinson’s disease (Steeves et al., 2009;

Voon et al., 2010) or in healthy subjects who were given dopa-

minergic modulating drugs (Pessiglione et al., 2006; Cools et al.,

2007). We did not find this pattern in our study, possibly because

of the unique feature of our design in making within-subject

comparisons in patients with idiopathic Parkinson’s disease. In par-

ticular, acute pharmacological manipulations in healthy volunteers

may have very different effects to those found in patients

previously exposed to dopaminergic agents. Another potential

explanation for these differences is that in contrast to the studies

that found differences in striatal activations in response to gains

and losses (Pessiglione et al., 2006; Bodi et al., 2009; Palminteri

et al., 2009; Voon et al., 2010), we did not have actual losses as

outcomes, only stimuli that were probabilistically more or less

likely to be correct. We caution against a conclusion that our

data indicate that prediction errors do not play an important role

in learning. Indeed, we observed prediction errors during the task

acquisition. We were, however, unable to detect differences in the

magnitude of these activations when dopaminergic drugs were

given to this patient group, consistent with a suggestion that for

successful choice, it is critical that dopamine levels are high during

actual performance. We also cannot discount the fact that there

might remain some residual activity within the dopaminergic

system of patients with Parkinson’s disease, resulting in adequate

levels of dopamine to signal reward prediction errors in some

structures, but not enough to form adequate cue value represen-

tations to allow successful generalization in those, or other, struc-

tures. Furthermore, in some contexts the relationship between

dopamine appears to follow an inverted U-shaped function

whereby the optimum level of performance exists at a certain

level of dopaminergic stimulation and moving off that peak,

either by reducing or increasing the levels of dopamine, leads to

worsened task performance (Robbins, 2000; Rowe et al., 2008;

Cools and D’Esposito, 2011) rendering dopaminergic manipula-

tions crucially dependant on baseline levels. There is a possibility

that high level of cognitive processing, such as working memory,

required for this task may obscure differences in striatal activa-

tions. Indeed, differing performance in tasks of this type has

been shown in genetic studies to have a differential impact on

prefrontal and striatal dopamine (Frank et al., 2007a; Klein

et al., 2007). However, in our task if dopamine had in fact

boosted the prediction error magnitude in a way that impacted

learning, we would have expected to see this in improved

behaviour in the performance phase. This would result in the

ON–ON group performing the best, which was in fact not the

case.

By teasing apart learning and performance in patients with

Parkinson’s disease, we found that dopaminergic medication im-

pacted the latter, but not the former. At the neural level, this

improved performance in the ON medication state was associated

with enhanced nucleus accumbens and ventromedial prefrontal

cortex activity for the chosen cue value, an effect that was

absent in the OFF medication state. Thus, the improved perform-

ance in patients ON medication cannot solely be attributed to an

effect on learning and must reflect some other effect of dopamine,

perhaps Pavlovian appetitive approach or a modulation of the

motivational impact of cues associated with improved neural

representation of cue value in a high dopamine state. By isolating

the processes on which dopamine has the greatest impact, our

findings point to likely mechanisms that underlie common behav-

ioural deficits seen in patients with Parkinson’s disease, both

clinically and in various laboratory tasks, as well as providing a

basis for future cognitive-oriented therapies.
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